Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reversible Jump Attack to Textual Classifiers with Modification Reduction (2403.14731v1)

Published 21 Mar 2024 in cs.CR, cs.CL, and cs.LG

Abstract: Recent studies on adversarial examples expose vulnerabilities of NLP models. Existing techniques for generating adversarial examples are typically driven by deterministic hierarchical rules that are agnostic to the optimal adversarial examples, a strategy that often results in adversarial samples with a suboptimal balance between magnitudes of changes and attack successes. To this end, in this research we propose two algorithms, Reversible Jump Attack (RJA) and Metropolis-Hasting Modification Reduction (MMR), to generate highly effective adversarial examples and to improve the imperceptibility of the examples, respectively. RJA utilizes a novel randomization mechanism to enlarge the search space and efficiently adapts to a number of perturbed words for adversarial examples. With these generated adversarial examples, MMR applies the Metropolis-Hasting sampler to enhance the imperceptibility of adversarial examples. Extensive experiments demonstrate that RJA-MMR outperforms current state-of-the-art methods in attack performance, imperceptibility, fluency and grammar correctness.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (68)
  1. Bird S, Klein E, Loper E (2009) Natural language processing with Python: analyzing text with the natural language toolkit. ” O’Reilly Media, Inc.” Cer et al (2018) Cer D, Yang Y, Kong Sy, et al (2018) Universal sentence encoder for english. In: Proceedings of the 2018 conference on empirical methods in natural language processing: system demonstrations, pp 169–174 Cheng et al (2020) Cheng M, Yi J, Chen PY, et al (2020) Seq2sick: Evaluating the robustness of sequence-to-sequence models with adversarial examples. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 3601–3608 Devlin et al (2019) Devlin J, Chang MW, Lee K, et al (2019) Bert: Pre-training of deep bidirectional transformers for language understanding. In: NAACL Dong and Dong (2003) Dong Z, Dong Q (2003) Hownet-a hybrid language and knowledge resource. In: International Conference on Natural Language Processing and Knowledge Engineering, 2003. Proceedings. 2003, IEEE, pp 820–824 Dong et al (2010) Dong Z, Dong Q, Hao C (2010) Hownet and its computation of meaning. In: Coling 2010: Demonstrations, pp 53–56 Ebrahimi et al (2018) Ebrahimi J, Rao A, Lowd D, et al (2018) Hotflip: White-box adversarial examples for text classification. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp 31–36 Fan et al (2018) Fan X, Li B, Sisson S (2018) Rectangular bounding process. Advances in Neural Information Processing Systems 31 Fan and Sisson (2011) Fan Y, Sisson SA (2011) Reversible jump mcmc. Handbook of Markov Chain Monte Carlo pp 67–92 Gan and Ng (2019) Gan WC, Ng HT (2019) Improving the robustness of question answering systems to question paraphrasing. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp 6065–6075 Garg and Ramakrishnan (2020) Garg S, Ramakrishnan G (2020) Bae: Bert-based adversarial examples for text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6174–6181 Goodfellow et al (2015) Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Cer D, Yang Y, Kong Sy, et al (2018) Universal sentence encoder for english. In: Proceedings of the 2018 conference on empirical methods in natural language processing: system demonstrations, pp 169–174 Cheng et al (2020) Cheng M, Yi J, Chen PY, et al (2020) Seq2sick: Evaluating the robustness of sequence-to-sequence models with adversarial examples. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 3601–3608 Devlin et al (2019) Devlin J, Chang MW, Lee K, et al (2019) Bert: Pre-training of deep bidirectional transformers for language understanding. In: NAACL Dong and Dong (2003) Dong Z, Dong Q (2003) Hownet-a hybrid language and knowledge resource. In: International Conference on Natural Language Processing and Knowledge Engineering, 2003. Proceedings. 2003, IEEE, pp 820–824 Dong et al (2010) Dong Z, Dong Q, Hao C (2010) Hownet and its computation of meaning. In: Coling 2010: Demonstrations, pp 53–56 Ebrahimi et al (2018) Ebrahimi J, Rao A, Lowd D, et al (2018) Hotflip: White-box adversarial examples for text classification. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp 31–36 Fan et al (2018) Fan X, Li B, Sisson S (2018) Rectangular bounding process. Advances in Neural Information Processing Systems 31 Fan and Sisson (2011) Fan Y, Sisson SA (2011) Reversible jump mcmc. Handbook of Markov Chain Monte Carlo pp 67–92 Gan and Ng (2019) Gan WC, Ng HT (2019) Improving the robustness of question answering systems to question paraphrasing. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp 6065–6075 Garg and Ramakrishnan (2020) Garg S, Ramakrishnan G (2020) Bae: Bert-based adversarial examples for text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6174–6181 Goodfellow et al (2015) Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Cheng M, Yi J, Chen PY, et al (2020) Seq2sick: Evaluating the robustness of sequence-to-sequence models with adversarial examples. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 3601–3608 Devlin et al (2019) Devlin J, Chang MW, Lee K, et al (2019) Bert: Pre-training of deep bidirectional transformers for language understanding. In: NAACL Dong and Dong (2003) Dong Z, Dong Q (2003) Hownet-a hybrid language and knowledge resource. In: International Conference on Natural Language Processing and Knowledge Engineering, 2003. Proceedings. 2003, IEEE, pp 820–824 Dong et al (2010) Dong Z, Dong Q, Hao C (2010) Hownet and its computation of meaning. In: Coling 2010: Demonstrations, pp 53–56 Ebrahimi et al (2018) Ebrahimi J, Rao A, Lowd D, et al (2018) Hotflip: White-box adversarial examples for text classification. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp 31–36 Fan et al (2018) Fan X, Li B, Sisson S (2018) Rectangular bounding process. Advances in Neural Information Processing Systems 31 Fan and Sisson (2011) Fan Y, Sisson SA (2011) Reversible jump mcmc. Handbook of Markov Chain Monte Carlo pp 67–92 Gan and Ng (2019) Gan WC, Ng HT (2019) Improving the robustness of question answering systems to question paraphrasing. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp 6065–6075 Garg and Ramakrishnan (2020) Garg S, Ramakrishnan G (2020) Bae: Bert-based adversarial examples for text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6174–6181 Goodfellow et al (2015) Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Devlin J, Chang MW, Lee K, et al (2019) Bert: Pre-training of deep bidirectional transformers for language understanding. In: NAACL Dong and Dong (2003) Dong Z, Dong Q (2003) Hownet-a hybrid language and knowledge resource. In: International Conference on Natural Language Processing and Knowledge Engineering, 2003. Proceedings. 2003, IEEE, pp 820–824 Dong et al (2010) Dong Z, Dong Q, Hao C (2010) Hownet and its computation of meaning. In: Coling 2010: Demonstrations, pp 53–56 Ebrahimi et al (2018) Ebrahimi J, Rao A, Lowd D, et al (2018) Hotflip: White-box adversarial examples for text classification. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp 31–36 Fan et al (2018) Fan X, Li B, Sisson S (2018) Rectangular bounding process. Advances in Neural Information Processing Systems 31 Fan and Sisson (2011) Fan Y, Sisson SA (2011) Reversible jump mcmc. Handbook of Markov Chain Monte Carlo pp 67–92 Gan and Ng (2019) Gan WC, Ng HT (2019) Improving the robustness of question answering systems to question paraphrasing. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp 6065–6075 Garg and Ramakrishnan (2020) Garg S, Ramakrishnan G (2020) Bae: Bert-based adversarial examples for text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6174–6181 Goodfellow et al (2015) Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Dong Z, Dong Q (2003) Hownet-a hybrid language and knowledge resource. In: International Conference on Natural Language Processing and Knowledge Engineering, 2003. Proceedings. 2003, IEEE, pp 820–824 Dong et al (2010) Dong Z, Dong Q, Hao C (2010) Hownet and its computation of meaning. In: Coling 2010: Demonstrations, pp 53–56 Ebrahimi et al (2018) Ebrahimi J, Rao A, Lowd D, et al (2018) Hotflip: White-box adversarial examples for text classification. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp 31–36 Fan et al (2018) Fan X, Li B, Sisson S (2018) Rectangular bounding process. Advances in Neural Information Processing Systems 31 Fan and Sisson (2011) Fan Y, Sisson SA (2011) Reversible jump mcmc. Handbook of Markov Chain Monte Carlo pp 67–92 Gan and Ng (2019) Gan WC, Ng HT (2019) Improving the robustness of question answering systems to question paraphrasing. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp 6065–6075 Garg and Ramakrishnan (2020) Garg S, Ramakrishnan G (2020) Bae: Bert-based adversarial examples for text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6174–6181 Goodfellow et al (2015) Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Dong Z, Dong Q, Hao C (2010) Hownet and its computation of meaning. In: Coling 2010: Demonstrations, pp 53–56 Ebrahimi et al (2018) Ebrahimi J, Rao A, Lowd D, et al (2018) Hotflip: White-box adversarial examples for text classification. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp 31–36 Fan et al (2018) Fan X, Li B, Sisson S (2018) Rectangular bounding process. Advances in Neural Information Processing Systems 31 Fan and Sisson (2011) Fan Y, Sisson SA (2011) Reversible jump mcmc. Handbook of Markov Chain Monte Carlo pp 67–92 Gan and Ng (2019) Gan WC, Ng HT (2019) Improving the robustness of question answering systems to question paraphrasing. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp 6065–6075 Garg and Ramakrishnan (2020) Garg S, Ramakrishnan G (2020) Bae: Bert-based adversarial examples for text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6174–6181 Goodfellow et al (2015) Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ebrahimi J, Rao A, Lowd D, et al (2018) Hotflip: White-box adversarial examples for text classification. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp 31–36 Fan et al (2018) Fan X, Li B, Sisson S (2018) Rectangular bounding process. Advances in Neural Information Processing Systems 31 Fan and Sisson (2011) Fan Y, Sisson SA (2011) Reversible jump mcmc. Handbook of Markov Chain Monte Carlo pp 67–92 Gan and Ng (2019) Gan WC, Ng HT (2019) Improving the robustness of question answering systems to question paraphrasing. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp 6065–6075 Garg and Ramakrishnan (2020) Garg S, Ramakrishnan G (2020) Bae: Bert-based adversarial examples for text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6174–6181 Goodfellow et al (2015) Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Fan X, Li B, Sisson S (2018) Rectangular bounding process. Advances in Neural Information Processing Systems 31 Fan and Sisson (2011) Fan Y, Sisson SA (2011) Reversible jump mcmc. Handbook of Markov Chain Monte Carlo pp 67–92 Gan and Ng (2019) Gan WC, Ng HT (2019) Improving the robustness of question answering systems to question paraphrasing. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp 6065–6075 Garg and Ramakrishnan (2020) Garg S, Ramakrishnan G (2020) Bae: Bert-based adversarial examples for text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6174–6181 Goodfellow et al (2015) Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Fan Y, Sisson SA (2011) Reversible jump mcmc. Handbook of Markov Chain Monte Carlo pp 67–92 Gan and Ng (2019) Gan WC, Ng HT (2019) Improving the robustness of question answering systems to question paraphrasing. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp 6065–6075 Garg and Ramakrishnan (2020) Garg S, Ramakrishnan G (2020) Bae: Bert-based adversarial examples for text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6174–6181 Goodfellow et al (2015) Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Gan WC, Ng HT (2019) Improving the robustness of question answering systems to question paraphrasing. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp 6065–6075 Garg and Ramakrishnan (2020) Garg S, Ramakrishnan G (2020) Bae: Bert-based adversarial examples for text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6174–6181 Goodfellow et al (2015) Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Garg S, Ramakrishnan G (2020) Bae: Bert-based adversarial examples for text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6174–6181 Goodfellow et al (2015) Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497
  2. Cer D, Yang Y, Kong Sy, et al (2018) Universal sentence encoder for english. In: Proceedings of the 2018 conference on empirical methods in natural language processing: system demonstrations, pp 169–174 Cheng et al (2020) Cheng M, Yi J, Chen PY, et al (2020) Seq2sick: Evaluating the robustness of sequence-to-sequence models with adversarial examples. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 3601–3608 Devlin et al (2019) Devlin J, Chang MW, Lee K, et al (2019) Bert: Pre-training of deep bidirectional transformers for language understanding. In: NAACL Dong and Dong (2003) Dong Z, Dong Q (2003) Hownet-a hybrid language and knowledge resource. In: International Conference on Natural Language Processing and Knowledge Engineering, 2003. Proceedings. 2003, IEEE, pp 820–824 Dong et al (2010) Dong Z, Dong Q, Hao C (2010) Hownet and its computation of meaning. In: Coling 2010: Demonstrations, pp 53–56 Ebrahimi et al (2018) Ebrahimi J, Rao A, Lowd D, et al (2018) Hotflip: White-box adversarial examples for text classification. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp 31–36 Fan et al (2018) Fan X, Li B, Sisson S (2018) Rectangular bounding process. Advances in Neural Information Processing Systems 31 Fan and Sisson (2011) Fan Y, Sisson SA (2011) Reversible jump mcmc. Handbook of Markov Chain Monte Carlo pp 67–92 Gan and Ng (2019) Gan WC, Ng HT (2019) Improving the robustness of question answering systems to question paraphrasing. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp 6065–6075 Garg and Ramakrishnan (2020) Garg S, Ramakrishnan G (2020) Bae: Bert-based adversarial examples for text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6174–6181 Goodfellow et al (2015) Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Cheng M, Yi J, Chen PY, et al (2020) Seq2sick: Evaluating the robustness of sequence-to-sequence models with adversarial examples. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 3601–3608 Devlin et al (2019) Devlin J, Chang MW, Lee K, et al (2019) Bert: Pre-training of deep bidirectional transformers for language understanding. In: NAACL Dong and Dong (2003) Dong Z, Dong Q (2003) Hownet-a hybrid language and knowledge resource. In: International Conference on Natural Language Processing and Knowledge Engineering, 2003. Proceedings. 2003, IEEE, pp 820–824 Dong et al (2010) Dong Z, Dong Q, Hao C (2010) Hownet and its computation of meaning. In: Coling 2010: Demonstrations, pp 53–56 Ebrahimi et al (2018) Ebrahimi J, Rao A, Lowd D, et al (2018) Hotflip: White-box adversarial examples for text classification. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp 31–36 Fan et al (2018) Fan X, Li B, Sisson S (2018) Rectangular bounding process. Advances in Neural Information Processing Systems 31 Fan and Sisson (2011) Fan Y, Sisson SA (2011) Reversible jump mcmc. Handbook of Markov Chain Monte Carlo pp 67–92 Gan and Ng (2019) Gan WC, Ng HT (2019) Improving the robustness of question answering systems to question paraphrasing. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp 6065–6075 Garg and Ramakrishnan (2020) Garg S, Ramakrishnan G (2020) Bae: Bert-based adversarial examples for text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6174–6181 Goodfellow et al (2015) Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Devlin J, Chang MW, Lee K, et al (2019) Bert: Pre-training of deep bidirectional transformers for language understanding. In: NAACL Dong and Dong (2003) Dong Z, Dong Q (2003) Hownet-a hybrid language and knowledge resource. In: International Conference on Natural Language Processing and Knowledge Engineering, 2003. Proceedings. 2003, IEEE, pp 820–824 Dong et al (2010) Dong Z, Dong Q, Hao C (2010) Hownet and its computation of meaning. In: Coling 2010: Demonstrations, pp 53–56 Ebrahimi et al (2018) Ebrahimi J, Rao A, Lowd D, et al (2018) Hotflip: White-box adversarial examples for text classification. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp 31–36 Fan et al (2018) Fan X, Li B, Sisson S (2018) Rectangular bounding process. Advances in Neural Information Processing Systems 31 Fan and Sisson (2011) Fan Y, Sisson SA (2011) Reversible jump mcmc. Handbook of Markov Chain Monte Carlo pp 67–92 Gan and Ng (2019) Gan WC, Ng HT (2019) Improving the robustness of question answering systems to question paraphrasing. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp 6065–6075 Garg and Ramakrishnan (2020) Garg S, Ramakrishnan G (2020) Bae: Bert-based adversarial examples for text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6174–6181 Goodfellow et al (2015) Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Dong Z, Dong Q (2003) Hownet-a hybrid language and knowledge resource. In: International Conference on Natural Language Processing and Knowledge Engineering, 2003. Proceedings. 2003, IEEE, pp 820–824 Dong et al (2010) Dong Z, Dong Q, Hao C (2010) Hownet and its computation of meaning. In: Coling 2010: Demonstrations, pp 53–56 Ebrahimi et al (2018) Ebrahimi J, Rao A, Lowd D, et al (2018) Hotflip: White-box adversarial examples for text classification. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp 31–36 Fan et al (2018) Fan X, Li B, Sisson S (2018) Rectangular bounding process. Advances in Neural Information Processing Systems 31 Fan and Sisson (2011) Fan Y, Sisson SA (2011) Reversible jump mcmc. Handbook of Markov Chain Monte Carlo pp 67–92 Gan and Ng (2019) Gan WC, Ng HT (2019) Improving the robustness of question answering systems to question paraphrasing. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp 6065–6075 Garg and Ramakrishnan (2020) Garg S, Ramakrishnan G (2020) Bae: Bert-based adversarial examples for text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6174–6181 Goodfellow et al (2015) Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Dong Z, Dong Q, Hao C (2010) Hownet and its computation of meaning. In: Coling 2010: Demonstrations, pp 53–56 Ebrahimi et al (2018) Ebrahimi J, Rao A, Lowd D, et al (2018) Hotflip: White-box adversarial examples for text classification. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp 31–36 Fan et al (2018) Fan X, Li B, Sisson S (2018) Rectangular bounding process. Advances in Neural Information Processing Systems 31 Fan and Sisson (2011) Fan Y, Sisson SA (2011) Reversible jump mcmc. Handbook of Markov Chain Monte Carlo pp 67–92 Gan and Ng (2019) Gan WC, Ng HT (2019) Improving the robustness of question answering systems to question paraphrasing. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp 6065–6075 Garg and Ramakrishnan (2020) Garg S, Ramakrishnan G (2020) Bae: Bert-based adversarial examples for text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6174–6181 Goodfellow et al (2015) Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ebrahimi J, Rao A, Lowd D, et al (2018) Hotflip: White-box adversarial examples for text classification. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp 31–36 Fan et al (2018) Fan X, Li B, Sisson S (2018) Rectangular bounding process. Advances in Neural Information Processing Systems 31 Fan and Sisson (2011) Fan Y, Sisson SA (2011) Reversible jump mcmc. Handbook of Markov Chain Monte Carlo pp 67–92 Gan and Ng (2019) Gan WC, Ng HT (2019) Improving the robustness of question answering systems to question paraphrasing. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp 6065–6075 Garg and Ramakrishnan (2020) Garg S, Ramakrishnan G (2020) Bae: Bert-based adversarial examples for text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6174–6181 Goodfellow et al (2015) Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Fan X, Li B, Sisson S (2018) Rectangular bounding process. Advances in Neural Information Processing Systems 31 Fan and Sisson (2011) Fan Y, Sisson SA (2011) Reversible jump mcmc. Handbook of Markov Chain Monte Carlo pp 67–92 Gan and Ng (2019) Gan WC, Ng HT (2019) Improving the robustness of question answering systems to question paraphrasing. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp 6065–6075 Garg and Ramakrishnan (2020) Garg S, Ramakrishnan G (2020) Bae: Bert-based adversarial examples for text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6174–6181 Goodfellow et al (2015) Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Fan Y, Sisson SA (2011) Reversible jump mcmc. Handbook of Markov Chain Monte Carlo pp 67–92 Gan and Ng (2019) Gan WC, Ng HT (2019) Improving the robustness of question answering systems to question paraphrasing. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp 6065–6075 Garg and Ramakrishnan (2020) Garg S, Ramakrishnan G (2020) Bae: Bert-based adversarial examples for text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6174–6181 Goodfellow et al (2015) Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Gan WC, Ng HT (2019) Improving the robustness of question answering systems to question paraphrasing. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp 6065–6075 Garg and Ramakrishnan (2020) Garg S, Ramakrishnan G (2020) Bae: Bert-based adversarial examples for text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6174–6181 Goodfellow et al (2015) Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Garg S, Ramakrishnan G (2020) Bae: Bert-based adversarial examples for text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6174–6181 Goodfellow et al (2015) Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497
  3. Cheng M, Yi J, Chen PY, et al (2020) Seq2sick: Evaluating the robustness of sequence-to-sequence models with adversarial examples. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 3601–3608 Devlin et al (2019) Devlin J, Chang MW, Lee K, et al (2019) Bert: Pre-training of deep bidirectional transformers for language understanding. In: NAACL Dong and Dong (2003) Dong Z, Dong Q (2003) Hownet-a hybrid language and knowledge resource. In: International Conference on Natural Language Processing and Knowledge Engineering, 2003. Proceedings. 2003, IEEE, pp 820–824 Dong et al (2010) Dong Z, Dong Q, Hao C (2010) Hownet and its computation of meaning. In: Coling 2010: Demonstrations, pp 53–56 Ebrahimi et al (2018) Ebrahimi J, Rao A, Lowd D, et al (2018) Hotflip: White-box adversarial examples for text classification. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp 31–36 Fan et al (2018) Fan X, Li B, Sisson S (2018) Rectangular bounding process. Advances in Neural Information Processing Systems 31 Fan and Sisson (2011) Fan Y, Sisson SA (2011) Reversible jump mcmc. Handbook of Markov Chain Monte Carlo pp 67–92 Gan and Ng (2019) Gan WC, Ng HT (2019) Improving the robustness of question answering systems to question paraphrasing. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp 6065–6075 Garg and Ramakrishnan (2020) Garg S, Ramakrishnan G (2020) Bae: Bert-based adversarial examples for text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6174–6181 Goodfellow et al (2015) Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Devlin J, Chang MW, Lee K, et al (2019) Bert: Pre-training of deep bidirectional transformers for language understanding. In: NAACL Dong and Dong (2003) Dong Z, Dong Q (2003) Hownet-a hybrid language and knowledge resource. In: International Conference on Natural Language Processing and Knowledge Engineering, 2003. Proceedings. 2003, IEEE, pp 820–824 Dong et al (2010) Dong Z, Dong Q, Hao C (2010) Hownet and its computation of meaning. In: Coling 2010: Demonstrations, pp 53–56 Ebrahimi et al (2018) Ebrahimi J, Rao A, Lowd D, et al (2018) Hotflip: White-box adversarial examples for text classification. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp 31–36 Fan et al (2018) Fan X, Li B, Sisson S (2018) Rectangular bounding process. Advances in Neural Information Processing Systems 31 Fan and Sisson (2011) Fan Y, Sisson SA (2011) Reversible jump mcmc. Handbook of Markov Chain Monte Carlo pp 67–92 Gan and Ng (2019) Gan WC, Ng HT (2019) Improving the robustness of question answering systems to question paraphrasing. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp 6065–6075 Garg and Ramakrishnan (2020) Garg S, Ramakrishnan G (2020) Bae: Bert-based adversarial examples for text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6174–6181 Goodfellow et al (2015) Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Dong Z, Dong Q (2003) Hownet-a hybrid language and knowledge resource. In: International Conference on Natural Language Processing and Knowledge Engineering, 2003. Proceedings. 2003, IEEE, pp 820–824 Dong et al (2010) Dong Z, Dong Q, Hao C (2010) Hownet and its computation of meaning. In: Coling 2010: Demonstrations, pp 53–56 Ebrahimi et al (2018) Ebrahimi J, Rao A, Lowd D, et al (2018) Hotflip: White-box adversarial examples for text classification. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp 31–36 Fan et al (2018) Fan X, Li B, Sisson S (2018) Rectangular bounding process. Advances in Neural Information Processing Systems 31 Fan and Sisson (2011) Fan Y, Sisson SA (2011) Reversible jump mcmc. Handbook of Markov Chain Monte Carlo pp 67–92 Gan and Ng (2019) Gan WC, Ng HT (2019) Improving the robustness of question answering systems to question paraphrasing. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp 6065–6075 Garg and Ramakrishnan (2020) Garg S, Ramakrishnan G (2020) Bae: Bert-based adversarial examples for text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6174–6181 Goodfellow et al (2015) Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Dong Z, Dong Q, Hao C (2010) Hownet and its computation of meaning. In: Coling 2010: Demonstrations, pp 53–56 Ebrahimi et al (2018) Ebrahimi J, Rao A, Lowd D, et al (2018) Hotflip: White-box adversarial examples for text classification. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp 31–36 Fan et al (2018) Fan X, Li B, Sisson S (2018) Rectangular bounding process. Advances in Neural Information Processing Systems 31 Fan and Sisson (2011) Fan Y, Sisson SA (2011) Reversible jump mcmc. Handbook of Markov Chain Monte Carlo pp 67–92 Gan and Ng (2019) Gan WC, Ng HT (2019) Improving the robustness of question answering systems to question paraphrasing. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp 6065–6075 Garg and Ramakrishnan (2020) Garg S, Ramakrishnan G (2020) Bae: Bert-based adversarial examples for text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6174–6181 Goodfellow et al (2015) Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ebrahimi J, Rao A, Lowd D, et al (2018) Hotflip: White-box adversarial examples for text classification. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp 31–36 Fan et al (2018) Fan X, Li B, Sisson S (2018) Rectangular bounding process. Advances in Neural Information Processing Systems 31 Fan and Sisson (2011) Fan Y, Sisson SA (2011) Reversible jump mcmc. Handbook of Markov Chain Monte Carlo pp 67–92 Gan and Ng (2019) Gan WC, Ng HT (2019) Improving the robustness of question answering systems to question paraphrasing. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp 6065–6075 Garg and Ramakrishnan (2020) Garg S, Ramakrishnan G (2020) Bae: Bert-based adversarial examples for text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6174–6181 Goodfellow et al (2015) Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Fan X, Li B, Sisson S (2018) Rectangular bounding process. Advances in Neural Information Processing Systems 31 Fan and Sisson (2011) Fan Y, Sisson SA (2011) Reversible jump mcmc. Handbook of Markov Chain Monte Carlo pp 67–92 Gan and Ng (2019) Gan WC, Ng HT (2019) Improving the robustness of question answering systems to question paraphrasing. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp 6065–6075 Garg and Ramakrishnan (2020) Garg S, Ramakrishnan G (2020) Bae: Bert-based adversarial examples for text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6174–6181 Goodfellow et al (2015) Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Fan Y, Sisson SA (2011) Reversible jump mcmc. Handbook of Markov Chain Monte Carlo pp 67–92 Gan and Ng (2019) Gan WC, Ng HT (2019) Improving the robustness of question answering systems to question paraphrasing. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp 6065–6075 Garg and Ramakrishnan (2020) Garg S, Ramakrishnan G (2020) Bae: Bert-based adversarial examples for text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6174–6181 Goodfellow et al (2015) Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Gan WC, Ng HT (2019) Improving the robustness of question answering systems to question paraphrasing. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp 6065–6075 Garg and Ramakrishnan (2020) Garg S, Ramakrishnan G (2020) Bae: Bert-based adversarial examples for text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6174–6181 Goodfellow et al (2015) Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Garg S, Ramakrishnan G (2020) Bae: Bert-based adversarial examples for text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6174–6181 Goodfellow et al (2015) Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497
  4. Devlin J, Chang MW, Lee K, et al (2019) Bert: Pre-training of deep bidirectional transformers for language understanding. In: NAACL Dong and Dong (2003) Dong Z, Dong Q (2003) Hownet-a hybrid language and knowledge resource. In: International Conference on Natural Language Processing and Knowledge Engineering, 2003. Proceedings. 2003, IEEE, pp 820–824 Dong et al (2010) Dong Z, Dong Q, Hao C (2010) Hownet and its computation of meaning. In: Coling 2010: Demonstrations, pp 53–56 Ebrahimi et al (2018) Ebrahimi J, Rao A, Lowd D, et al (2018) Hotflip: White-box adversarial examples for text classification. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp 31–36 Fan et al (2018) Fan X, Li B, Sisson S (2018) Rectangular bounding process. Advances in Neural Information Processing Systems 31 Fan and Sisson (2011) Fan Y, Sisson SA (2011) Reversible jump mcmc. Handbook of Markov Chain Monte Carlo pp 67–92 Gan and Ng (2019) Gan WC, Ng HT (2019) Improving the robustness of question answering systems to question paraphrasing. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp 6065–6075 Garg and Ramakrishnan (2020) Garg S, Ramakrishnan G (2020) Bae: Bert-based adversarial examples for text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6174–6181 Goodfellow et al (2015) Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Dong Z, Dong Q (2003) Hownet-a hybrid language and knowledge resource. In: International Conference on Natural Language Processing and Knowledge Engineering, 2003. Proceedings. 2003, IEEE, pp 820–824 Dong et al (2010) Dong Z, Dong Q, Hao C (2010) Hownet and its computation of meaning. In: Coling 2010: Demonstrations, pp 53–56 Ebrahimi et al (2018) Ebrahimi J, Rao A, Lowd D, et al (2018) Hotflip: White-box adversarial examples for text classification. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp 31–36 Fan et al (2018) Fan X, Li B, Sisson S (2018) Rectangular bounding process. Advances in Neural Information Processing Systems 31 Fan and Sisson (2011) Fan Y, Sisson SA (2011) Reversible jump mcmc. Handbook of Markov Chain Monte Carlo pp 67–92 Gan and Ng (2019) Gan WC, Ng HT (2019) Improving the robustness of question answering systems to question paraphrasing. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp 6065–6075 Garg and Ramakrishnan (2020) Garg S, Ramakrishnan G (2020) Bae: Bert-based adversarial examples for text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6174–6181 Goodfellow et al (2015) Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Dong Z, Dong Q, Hao C (2010) Hownet and its computation of meaning. In: Coling 2010: Demonstrations, pp 53–56 Ebrahimi et al (2018) Ebrahimi J, Rao A, Lowd D, et al (2018) Hotflip: White-box adversarial examples for text classification. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp 31–36 Fan et al (2018) Fan X, Li B, Sisson S (2018) Rectangular bounding process. Advances in Neural Information Processing Systems 31 Fan and Sisson (2011) Fan Y, Sisson SA (2011) Reversible jump mcmc. Handbook of Markov Chain Monte Carlo pp 67–92 Gan and Ng (2019) Gan WC, Ng HT (2019) Improving the robustness of question answering systems to question paraphrasing. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp 6065–6075 Garg and Ramakrishnan (2020) Garg S, Ramakrishnan G (2020) Bae: Bert-based adversarial examples for text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6174–6181 Goodfellow et al (2015) Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ebrahimi J, Rao A, Lowd D, et al (2018) Hotflip: White-box adversarial examples for text classification. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp 31–36 Fan et al (2018) Fan X, Li B, Sisson S (2018) Rectangular bounding process. Advances in Neural Information Processing Systems 31 Fan and Sisson (2011) Fan Y, Sisson SA (2011) Reversible jump mcmc. Handbook of Markov Chain Monte Carlo pp 67–92 Gan and Ng (2019) Gan WC, Ng HT (2019) Improving the robustness of question answering systems to question paraphrasing. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp 6065–6075 Garg and Ramakrishnan (2020) Garg S, Ramakrishnan G (2020) Bae: Bert-based adversarial examples for text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6174–6181 Goodfellow et al (2015) Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Fan X, Li B, Sisson S (2018) Rectangular bounding process. Advances in Neural Information Processing Systems 31 Fan and Sisson (2011) Fan Y, Sisson SA (2011) Reversible jump mcmc. Handbook of Markov Chain Monte Carlo pp 67–92 Gan and Ng (2019) Gan WC, Ng HT (2019) Improving the robustness of question answering systems to question paraphrasing. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp 6065–6075 Garg and Ramakrishnan (2020) Garg S, Ramakrishnan G (2020) Bae: Bert-based adversarial examples for text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6174–6181 Goodfellow et al (2015) Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Fan Y, Sisson SA (2011) Reversible jump mcmc. Handbook of Markov Chain Monte Carlo pp 67–92 Gan and Ng (2019) Gan WC, Ng HT (2019) Improving the robustness of question answering systems to question paraphrasing. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp 6065–6075 Garg and Ramakrishnan (2020) Garg S, Ramakrishnan G (2020) Bae: Bert-based adversarial examples for text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6174–6181 Goodfellow et al (2015) Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Gan WC, Ng HT (2019) Improving the robustness of question answering systems to question paraphrasing. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp 6065–6075 Garg and Ramakrishnan (2020) Garg S, Ramakrishnan G (2020) Bae: Bert-based adversarial examples for text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6174–6181 Goodfellow et al (2015) Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Garg S, Ramakrishnan G (2020) Bae: Bert-based adversarial examples for text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6174–6181 Goodfellow et al (2015) Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497
  5. Dong Z, Dong Q (2003) Hownet-a hybrid language and knowledge resource. In: International Conference on Natural Language Processing and Knowledge Engineering, 2003. Proceedings. 2003, IEEE, pp 820–824 Dong et al (2010) Dong Z, Dong Q, Hao C (2010) Hownet and its computation of meaning. In: Coling 2010: Demonstrations, pp 53–56 Ebrahimi et al (2018) Ebrahimi J, Rao A, Lowd D, et al (2018) Hotflip: White-box adversarial examples for text classification. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp 31–36 Fan et al (2018) Fan X, Li B, Sisson S (2018) Rectangular bounding process. Advances in Neural Information Processing Systems 31 Fan and Sisson (2011) Fan Y, Sisson SA (2011) Reversible jump mcmc. Handbook of Markov Chain Monte Carlo pp 67–92 Gan and Ng (2019) Gan WC, Ng HT (2019) Improving the robustness of question answering systems to question paraphrasing. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp 6065–6075 Garg and Ramakrishnan (2020) Garg S, Ramakrishnan G (2020) Bae: Bert-based adversarial examples for text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6174–6181 Goodfellow et al (2015) Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Dong Z, Dong Q, Hao C (2010) Hownet and its computation of meaning. In: Coling 2010: Demonstrations, pp 53–56 Ebrahimi et al (2018) Ebrahimi J, Rao A, Lowd D, et al (2018) Hotflip: White-box adversarial examples for text classification. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp 31–36 Fan et al (2018) Fan X, Li B, Sisson S (2018) Rectangular bounding process. Advances in Neural Information Processing Systems 31 Fan and Sisson (2011) Fan Y, Sisson SA (2011) Reversible jump mcmc. Handbook of Markov Chain Monte Carlo pp 67–92 Gan and Ng (2019) Gan WC, Ng HT (2019) Improving the robustness of question answering systems to question paraphrasing. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp 6065–6075 Garg and Ramakrishnan (2020) Garg S, Ramakrishnan G (2020) Bae: Bert-based adversarial examples for text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6174–6181 Goodfellow et al (2015) Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ebrahimi J, Rao A, Lowd D, et al (2018) Hotflip: White-box adversarial examples for text classification. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp 31–36 Fan et al (2018) Fan X, Li B, Sisson S (2018) Rectangular bounding process. Advances in Neural Information Processing Systems 31 Fan and Sisson (2011) Fan Y, Sisson SA (2011) Reversible jump mcmc. Handbook of Markov Chain Monte Carlo pp 67–92 Gan and Ng (2019) Gan WC, Ng HT (2019) Improving the robustness of question answering systems to question paraphrasing. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp 6065–6075 Garg and Ramakrishnan (2020) Garg S, Ramakrishnan G (2020) Bae: Bert-based adversarial examples for text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6174–6181 Goodfellow et al (2015) Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Fan X, Li B, Sisson S (2018) Rectangular bounding process. Advances in Neural Information Processing Systems 31 Fan and Sisson (2011) Fan Y, Sisson SA (2011) Reversible jump mcmc. Handbook of Markov Chain Monte Carlo pp 67–92 Gan and Ng (2019) Gan WC, Ng HT (2019) Improving the robustness of question answering systems to question paraphrasing. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp 6065–6075 Garg and Ramakrishnan (2020) Garg S, Ramakrishnan G (2020) Bae: Bert-based adversarial examples for text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6174–6181 Goodfellow et al (2015) Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Fan Y, Sisson SA (2011) Reversible jump mcmc. Handbook of Markov Chain Monte Carlo pp 67–92 Gan and Ng (2019) Gan WC, Ng HT (2019) Improving the robustness of question answering systems to question paraphrasing. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp 6065–6075 Garg and Ramakrishnan (2020) Garg S, Ramakrishnan G (2020) Bae: Bert-based adversarial examples for text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6174–6181 Goodfellow et al (2015) Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Gan WC, Ng HT (2019) Improving the robustness of question answering systems to question paraphrasing. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp 6065–6075 Garg and Ramakrishnan (2020) Garg S, Ramakrishnan G (2020) Bae: Bert-based adversarial examples for text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6174–6181 Goodfellow et al (2015) Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Garg S, Ramakrishnan G (2020) Bae: Bert-based adversarial examples for text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6174–6181 Goodfellow et al (2015) Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497
  6. Dong Z, Dong Q, Hao C (2010) Hownet and its computation of meaning. In: Coling 2010: Demonstrations, pp 53–56 Ebrahimi et al (2018) Ebrahimi J, Rao A, Lowd D, et al (2018) Hotflip: White-box adversarial examples for text classification. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp 31–36 Fan et al (2018) Fan X, Li B, Sisson S (2018) Rectangular bounding process. Advances in Neural Information Processing Systems 31 Fan and Sisson (2011) Fan Y, Sisson SA (2011) Reversible jump mcmc. Handbook of Markov Chain Monte Carlo pp 67–92 Gan and Ng (2019) Gan WC, Ng HT (2019) Improving the robustness of question answering systems to question paraphrasing. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp 6065–6075 Garg and Ramakrishnan (2020) Garg S, Ramakrishnan G (2020) Bae: Bert-based adversarial examples for text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6174–6181 Goodfellow et al (2015) Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ebrahimi J, Rao A, Lowd D, et al (2018) Hotflip: White-box adversarial examples for text classification. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp 31–36 Fan et al (2018) Fan X, Li B, Sisson S (2018) Rectangular bounding process. Advances in Neural Information Processing Systems 31 Fan and Sisson (2011) Fan Y, Sisson SA (2011) Reversible jump mcmc. Handbook of Markov Chain Monte Carlo pp 67–92 Gan and Ng (2019) Gan WC, Ng HT (2019) Improving the robustness of question answering systems to question paraphrasing. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp 6065–6075 Garg and Ramakrishnan (2020) Garg S, Ramakrishnan G (2020) Bae: Bert-based adversarial examples for text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6174–6181 Goodfellow et al (2015) Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Fan X, Li B, Sisson S (2018) Rectangular bounding process. Advances in Neural Information Processing Systems 31 Fan and Sisson (2011) Fan Y, Sisson SA (2011) Reversible jump mcmc. Handbook of Markov Chain Monte Carlo pp 67–92 Gan and Ng (2019) Gan WC, Ng HT (2019) Improving the robustness of question answering systems to question paraphrasing. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp 6065–6075 Garg and Ramakrishnan (2020) Garg S, Ramakrishnan G (2020) Bae: Bert-based adversarial examples for text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6174–6181 Goodfellow et al (2015) Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Fan Y, Sisson SA (2011) Reversible jump mcmc. Handbook of Markov Chain Monte Carlo pp 67–92 Gan and Ng (2019) Gan WC, Ng HT (2019) Improving the robustness of question answering systems to question paraphrasing. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp 6065–6075 Garg and Ramakrishnan (2020) Garg S, Ramakrishnan G (2020) Bae: Bert-based adversarial examples for text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6174–6181 Goodfellow et al (2015) Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Gan WC, Ng HT (2019) Improving the robustness of question answering systems to question paraphrasing. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp 6065–6075 Garg and Ramakrishnan (2020) Garg S, Ramakrishnan G (2020) Bae: Bert-based adversarial examples for text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6174–6181 Goodfellow et al (2015) Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Garg S, Ramakrishnan G (2020) Bae: Bert-based adversarial examples for text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6174–6181 Goodfellow et al (2015) Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497
  7. Ebrahimi J, Rao A, Lowd D, et al (2018) Hotflip: White-box adversarial examples for text classification. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp 31–36 Fan et al (2018) Fan X, Li B, Sisson S (2018) Rectangular bounding process. Advances in Neural Information Processing Systems 31 Fan and Sisson (2011) Fan Y, Sisson SA (2011) Reversible jump mcmc. Handbook of Markov Chain Monte Carlo pp 67–92 Gan and Ng (2019) Gan WC, Ng HT (2019) Improving the robustness of question answering systems to question paraphrasing. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp 6065–6075 Garg and Ramakrishnan (2020) Garg S, Ramakrishnan G (2020) Bae: Bert-based adversarial examples for text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6174–6181 Goodfellow et al (2015) Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Fan X, Li B, Sisson S (2018) Rectangular bounding process. Advances in Neural Information Processing Systems 31 Fan and Sisson (2011) Fan Y, Sisson SA (2011) Reversible jump mcmc. Handbook of Markov Chain Monte Carlo pp 67–92 Gan and Ng (2019) Gan WC, Ng HT (2019) Improving the robustness of question answering systems to question paraphrasing. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp 6065–6075 Garg and Ramakrishnan (2020) Garg S, Ramakrishnan G (2020) Bae: Bert-based adversarial examples for text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6174–6181 Goodfellow et al (2015) Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Fan Y, Sisson SA (2011) Reversible jump mcmc. Handbook of Markov Chain Monte Carlo pp 67–92 Gan and Ng (2019) Gan WC, Ng HT (2019) Improving the robustness of question answering systems to question paraphrasing. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp 6065–6075 Garg and Ramakrishnan (2020) Garg S, Ramakrishnan G (2020) Bae: Bert-based adversarial examples for text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6174–6181 Goodfellow et al (2015) Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Gan WC, Ng HT (2019) Improving the robustness of question answering systems to question paraphrasing. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp 6065–6075 Garg and Ramakrishnan (2020) Garg S, Ramakrishnan G (2020) Bae: Bert-based adversarial examples for text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6174–6181 Goodfellow et al (2015) Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Garg S, Ramakrishnan G (2020) Bae: Bert-based adversarial examples for text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6174–6181 Goodfellow et al (2015) Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497
  8. Fan X, Li B, Sisson S (2018) Rectangular bounding process. Advances in Neural Information Processing Systems 31 Fan and Sisson (2011) Fan Y, Sisson SA (2011) Reversible jump mcmc. Handbook of Markov Chain Monte Carlo pp 67–92 Gan and Ng (2019) Gan WC, Ng HT (2019) Improving the robustness of question answering systems to question paraphrasing. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp 6065–6075 Garg and Ramakrishnan (2020) Garg S, Ramakrishnan G (2020) Bae: Bert-based adversarial examples for text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6174–6181 Goodfellow et al (2015) Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Fan Y, Sisson SA (2011) Reversible jump mcmc. Handbook of Markov Chain Monte Carlo pp 67–92 Gan and Ng (2019) Gan WC, Ng HT (2019) Improving the robustness of question answering systems to question paraphrasing. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp 6065–6075 Garg and Ramakrishnan (2020) Garg S, Ramakrishnan G (2020) Bae: Bert-based adversarial examples for text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6174–6181 Goodfellow et al (2015) Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Gan WC, Ng HT (2019) Improving the robustness of question answering systems to question paraphrasing. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp 6065–6075 Garg and Ramakrishnan (2020) Garg S, Ramakrishnan G (2020) Bae: Bert-based adversarial examples for text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6174–6181 Goodfellow et al (2015) Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Garg S, Ramakrishnan G (2020) Bae: Bert-based adversarial examples for text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6174–6181 Goodfellow et al (2015) Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497
  9. Fan Y, Sisson SA (2011) Reversible jump mcmc. Handbook of Markov Chain Monte Carlo pp 67–92 Gan and Ng (2019) Gan WC, Ng HT (2019) Improving the robustness of question answering systems to question paraphrasing. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp 6065–6075 Garg and Ramakrishnan (2020) Garg S, Ramakrishnan G (2020) Bae: Bert-based adversarial examples for text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6174–6181 Goodfellow et al (2015) Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Gan WC, Ng HT (2019) Improving the robustness of question answering systems to question paraphrasing. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp 6065–6075 Garg and Ramakrishnan (2020) Garg S, Ramakrishnan G (2020) Bae: Bert-based adversarial examples for text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6174–6181 Goodfellow et al (2015) Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Garg S, Ramakrishnan G (2020) Bae: Bert-based adversarial examples for text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6174–6181 Goodfellow et al (2015) Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497
  10. Gan WC, Ng HT (2019) Improving the robustness of question answering systems to question paraphrasing. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp 6065–6075 Garg and Ramakrishnan (2020) Garg S, Ramakrishnan G (2020) Bae: Bert-based adversarial examples for text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6174–6181 Goodfellow et al (2015) Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Garg S, Ramakrishnan G (2020) Bae: Bert-based adversarial examples for text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6174–6181 Goodfellow et al (2015) Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497
  11. Garg S, Ramakrishnan G (2020) Bae: Bert-based adversarial examples for text classification. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6174–6181 Goodfellow et al (2015) Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497
  12. Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. CoRR abs/1412.6572 Green (1995a) Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497
  13. Green PJ (1995a) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732 Green (1995b) Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497
  14. Green PJ (1995b) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4):711–732 Haase et al (2021) Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497
  15. Haase JF, Dellantonio L, Celi A, et al (2021) A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5:393 Harrison et al (2017) Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497
  16. Harrison B, Purdy C, Riedl MO (2017) Toward automated story generation with markov chain monte carlo methods and deep neural networks. In: Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference Herrmann (1986) Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497
  17. Herrmann H (1986) Fast algorithm for the simulation of ising models. Journal of statistical physics 45(1):145–151 Ilyas et al (2019) Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497
  18. Ilyas A, Santurkar S, Tsipras D, et al (2019) Adversarial examples are not bugs, they are features. Advances in neural information processing systemas 32 Iyyer et al (2018a) Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497
  19. Iyyer M, Wieting J, Gimpel K, et al (2018a) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1875–1885 Iyyer et al (2018b) Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497
  20. Iyyer M, Wieting J, Gimpel K, et al (2018b) Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, pp 1875–1885 Jia and Liang (2017) Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497
  21. Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, pp 2021–2031 Jia et al (2019) Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497
  22. Jia R, Raghunathan A, Göksel K, et al (2019) Certified robustness to adversarial word substitutions. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp 4129–4142 Jin et al (2020) Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497
  23. Jin D, Jin Z, Zhou JT, et al (2020) Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: AAAI Kang and Ren (2011) Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497
  24. Kang X, Ren F (2011) Sampling latent emotions and topics in a hierarchical bayesian network. 2011 7th International Conference on Natural Language Processing and Knowledge Engineering pp 37–42 Kann et al (2018) Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497
  25. Kann K, Rothe S, Filippova K (2018) Sentence-level fluency evaluation: References help, but can be spared! In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp 313–323 Kim (2014) Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497
  26. Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP Kroese et al (2011) Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497
  27. Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo Methods. Wiley Kumagai et al (2016) Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497
  28. Kumagai K, Kobayashi I, Mochihashi D, et al (2016) Human-like natural language generation using monte carlo tree search. In: CC-NLG Li et al (2021) Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497
  29. Li D, Zhang Y, Peng H, et al (2021) Contextualized perturbation for textual adversarial attack. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 5053–5069 Li et al (2020) Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497
  30. Li L, Ma R, Guo Q, et al (2020) Bert-attack: Adversarial attack against bert using bert. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 6193–6202 Liang et al (2018) Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497
  31. Liang B, Li H, Su M, et al (2018) Deep text classification can be fooled. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’18, p 4208–4215 Liu et al (2019) Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497
  32. Liu Y, Ott M, Goyal N, et al (2019) Roberta: A robustly optimized bert pretraining approach. ArXiv abs/1907.11692 Maas et al (2011) Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497
  33. Maas AL, Daly RE, Pham PT, et al (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Portland, Oregon, USA, pp 142–150, URL http://www.aclweb.org/anthology/P11-1015 Metropolis et al (1953a) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497
  34. Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953a) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Metropolis et al (1953b) Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497
  35. Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953b) Equation of state calculations by fast computing machines. The journal of chemical physics 21(6):1087–1092 Michel et al (2019) Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497
  36. Michel P, Li X, Neubig G, et al (2019) On evaluation of adversarial perturbations for sequence-to-sequence models. arXiv preprint arXiv:190306620 Mikolov et al (2013) Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497
  37. Mikolov T, Chen K, Corrado GS, et al (2013) Efficient estimation of word representations in vector space. In: ICLR Miller (1992) Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497
  38. Miller GA (1992) Wordnet: A lexical database for english. Commun ACM 38:39–41 Miller et al (1990) Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497
  39. Miller GA, Beckwith R, Fellbaum C, et al (1990) Introduction to wordnet: An online lexical database. International journal of lexicography 3(4):235–244 Morris et al (2020) Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497
  40. Morris J, Lifland E, Yoo JY, et al (2020) Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp 119–126 Mozes et al (2021) Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497
  41. Mozes M, Stenetorp P, Kleinberg B, et al (2021) Frequency-guided word substitutions for detecting textual adversarial examples. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp 171–186 Mrkšić et al (2016) Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497
  42. Mrkšić N, Séaghdha DÓ, Thomson B, et al (2016) Counter-fitting word vectors to linguistic constraints. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 142–148 Naber et al (2003) Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497
  43. Naber D, et al (2003) A rule-based style and grammar checker. Citeseer Ni et al (2022) Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497
  44. Ni M, Wang C, Zhu T, et al (2022) Attacking neural machine translations via hybrid attention learning. Machine Learning 111(11):3977–4002 Papernot et al (2016) Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497
  45. Papernot N, McDaniel PD, Swami A, et al (2016) Crafting adversarial input sequences for recurrent neural networks. CoRR abs/1604.08275. https://arxiv.org/abs/1604.08275 Pennington et al (2014) Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497
  46. Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543 Qi et al (2019) Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497
  47. Qi F, Yang C, Liu Z, et al (2019) Openhownet: An open sememe-based lexical knowledge base. arXiv preprint arXiv:190109957 Qi et al (2020) Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497
  48. Qi F, Chang L, Sun M, et al (2020) Towards building a multilingual sememe knowledge base: predicting sememes for babelnet synsets. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 8624–8631 Radford et al (2019) Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497
  49. Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask learners. OpenAI Ren et al (2019) Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497
  50. Ren S, Deng Y, He K, et al (2019) Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1085–1097 Ribeiro et al (2018) Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497
  51. Ribeiro MT, Singh S, Guestrin C (2018) Semantically equivalent adversarial rules for debugging nlp models. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, pp 856–865 Rincent et al (2017) Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497
  52. Rincent R, Kuhn E, Monod H, et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical and Applied Genetics 130(8):1735–1752 Rubinstein (1999) Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497
  53. Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability 1(2):127–190 Samanta and Mehta (2018) Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497
  54. Samanta S, Mehta S (2018) Generating adversarial text samples. In: European Conference on Information Retrieval, Springer, pp 744–749 Sanh et al (2019) Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497
  55. Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 Saravia et al (2018) Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497
  56. Saravia E, Liu HCT, Huang YH, et al (2018) CARER: Contextualized affect representations for emotion recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, pp 3687–3697 Socher et al (2013) Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497
  57. Socher R, Perelygin A, Wu J, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pp 1631–1642 Tan et al (2020) Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497
  58. Tan S, Joty S, Kan MY, et al (2020) It’s morphin’ time! Combating linguistic discrimination with inflectional perturbations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 2920–2935 Toutanova et al (2003) Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497
  59. Toutanova K, Klein D, Manning CD, et al (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. Association for Computational Linguistics, USA, NAACL ’03, p 173–180 Turc et al (2019) Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497
  60. Turc I, Chang M, Lee K, et al (2019) Well-read students learn better: The impact of student initialization on knowledge distillation. CoRR abs/1908.08962. URL http://arxiv.org/abs/1908.08962, https://arxiv.org/abs/1908.08962 Wu et al (2016) Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497
  61. Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144 Yang et al (2021) Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497
  62. Yang X, Liu W, Bailey J, et al (2021) Bigram and unigram based text attack via adaptive monotonic heuristic search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 706–714 Zang et al (2020) Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497
  63. Zang Y, Qi F, Yang C, et al (2020) Word-level textual adversarial attacking as combinatorial optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp 6066–6080 Zeng et al (2023) Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497
  64. Zeng J, Xu J, Zheng X, et al (2023) Certified robustness to text adversarial attacks by randomized [MASK]. Computational Linguistics 49(2):395–427. 10.1162/coli_a_00476, URL https://aclanthology.org/2023.cl-2.5 Zhang et al (2019) Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497
  65. Zhang H, Zhou H, Miao N, et al (2019) Generating fluent adversarial examples for natural languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy Zhang et al (2020) Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497
  66. Zhang W, Sheng QZ, Alhazmi AAF, et al (2020) Adversarial attacks on deep-learning models in natural language processing. ACM Transactions on Intelligent Systems and Technology (TIST) 11:1 – 41 Zhang et al (2015) Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497
  67. Zhang X, Zhao JJ, LeCun Y (2015) Character-level convolutional networks for text classification. In: NIPS Zou et al (2020) Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497 Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497
  68. Zou W, Huang S, Xie J, et al (2020) A reinforced generation of adversarial examples for neural machine translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, pp 3486–3497

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets